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Abstract The design and development of the neural
network (NN)-based controller performance for the
activated sludge process in sequencing batch reactor
(SBR) is presented in this paper. Here we give a com-
parative study of various neural network (NN)-based
controllers such as the direct inverse control, internal
model control (IMC) and hybrid NN control strategies
to maintain the dissolved oxygen (DO) level of an acti-
vated sludge system by manipulating the air flow rate.
The NN inverse model-based controller with the model-
based scheme represents the controller, which relies so-
lely upon the simple NN inverse model. In the IMC,
both the forward and inverse models are used directly as
elements within the feedback loop. The hybrid NN
control consists of a basic NN controller in parallel with
a proportional integral (PT) controller. Various simula-
tion tests involving multiple set-point changes, distur-
bances rejection and noise effects were performed to
review the performances of these various controllers.
From the results it can be seen that hybrid controller
gives the best results in tracking set-point changes under
disturbances and noise effects.
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Introduction

Dissolved oxygen (DO) concentration is regarded as the
most important control parameter in activated sludge
process because of economic reasons and process per-
formance. Too high a DO concentration will lead to
unnecessary power consumption due to high aeration
and affect the anoxic process. A DO concentration that
is too low inhibits bacterial growth. Therefore, proper
DO control can give improved process performance and
provide economic incentive to minimize the excess oxy-
gen consumption by supplying the necessary air to meet
the time-varying oxygen demand. However, the princi-
pal difficulties in the control of biological process con-
trol are the variability of the kinetic parameters, time-
varying influent wastewater conditions, non-linearity,
time delay, sensor noise and the limited availability of
on-line information; hence, adaptive and non-linear
controller is the better choice for such biological process
control. Due to their impressive capability in dealing
with severe non-linearity and uncertainty of a system,
the application of neural network (NN) method for the
design of such controllers is promising [1].

To overcome these problems previously, various
successful conventional DO control schemes, such as
proportional-only and PID control have been applied
[2]. Several adaptive control strategies have been sug-
gested recently for the control of DO concentration in
the aeration basin [3-6]. Ref. [7] introduced a model-
based predictive control strategy to reduce the effluent
ammonia, nitrate and nitrite (SNOy) by adjusting the
cycle length of a sequencing batch reactor (SBR)
scheme. Using the same SBR process [§] formulated an
adaptive control scheme by introducing an external
carbon source, in order to achieve a similar end. Ref. [9]
applied a closed loop identification and control method
to a full-scale coke wastewater treatment plant. Ref. [10]
compared several process identification methods for DO
dynamics and compared the novel estimation methods
for oxygen transfer rate and respiration rate and applied
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a supervisory control algorithm in the full-scale waste-
water treatment plant.

Artificial neural networks (ANN) have also been
applied recently for activated sludge systems modeling
and control [11-14]. ANN are computing procedures
used to model complex systems through a process of
“learning” from examples, without a priori knowledge
about the systems’ structure or parameters. An inter-
esting characteristic of ANN is that they can approxi-
mate any continuous function [15]. A process control
system built with ANN models has been revealed as a
reliable tool to optimize the operation performance in a
dynamic complex water and wastewater treatment sys-
tem [16—18].

This paper proposes an application of ANN to con-
trol DO concentration in a SBR. Simulation data from
the mathematical model of a SBR was used to train and
test various NN topologies. The models were chosen in
an effort to identify the one that best represented the
system. The training cycle was repeated with all the sets
of input/output pair patterns in data set, and the itera-
tion was continued until the error function was mini-
mized. The proposed control method utilizes feed
forward NN model in various control configurations
namely the direct inverse method, internal model control
(IMC) and the hybrid scheme. The performance of these
proposed strategies is then demonstrated through sim-
ulation studies involving multiple set-point tracking
study and disturbance rejection under multiple set-point
tracking and noise effect.

Model development
Sequencing batch reactor process

Activated sludge is an aerobic biological process in
which wastewater is mixed with a suspension of micro-
organisms to assimilate pollutants and is then settled to
separate the treated effluent. In the SBR system, all
treatment steps takes place in a single reactor with dif-
ferent phases separated in time. The cycle in a typical
SBR is divided into five discrete time periods: fill, react,
settle, draw, and idle period. The system used in this
study is based on a bench-scale SBR [19]. Figure 1
shows this system and its operational description. This
system was operated in a 6-hour cycle mode with a fill
time of 0.5 h, reaction time of 3 h, settle time of 1 h,
draw time of 0.5 h, and idle time of 1 h.

Mathematical model

These models provide a detailed description of bio-
chemical oxygen demand (BOD) removal, nitrification,
and denitrification. In the SBR, aerobic treatment,
nitrification and denitrification are carried out in the
same reactor. The models used in the simulation studies

Feed
Reservoir

Compressor Air

Magnetic Stirrer |

Time(hr): 0 05 35 45 5 6
Stage Fill React Settle Draw Idle
Air : Off On Off  Off  Off
Stirrer :  Off On Off  Off On

Fig. 1 Schematic and process description of sequencing batch
reactor operation

are based on the Activated Sludge Model Nol, or ASM1
[20, 21] as below

Mass balance for the readily biodegradable substrate:
ds; F

@ TSy

Mass balance for the slowly biodegradable substrate:

dx, F
3 =~ 7 K f = X) (1= fo)rma +raa) = e (2)
Mass balance for the nitrate and nitrite:

dSvo F 1 1 —YH oy
=_(S -S - _ anoxic. 3
T V( NO.f — SNo) + A T'AG 2867, "H,G (3)

Mass balance for the ammonium:

dSNH F

. 1
T (SnH,f — SNH) — (lXB + Y_A) FAG + 'NH

— IxB'H,G- (4)

HG + h- (1)

Mass balance for the soluble organic nitrogen:

dSND F

X
Tzv(SND,f—SND)—FVh( ;?) — FNH- (5)

Mass balance for particulate organic nitrogen in the
reactor

dXnp F
= ~ X
Q@ V( ND,f ND)
. . XND
+ (ixg — fpixe)(rad +7rad) — n Y. ) (6)
where

rA _H( S )( %o >XBA
¢ A\ Knn + S/ \Koa + S, ’
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The dynamics of DO (S,) in the reactor is described
by the non-linear differential equation [14]:

1 -1 457V
G = 7 (Sor —S) - Vi R

Ya
+ kLa(Qair(t)xSo,sat - S0<t))'

= ky BH

(7)

The function kt, a(Q.;, (7)) describes the oxygen transfer
and depends on the aeration actuating system and
sludge conditions. It is assumed to be linear [14]; given
by the following equation:

kva(Ouir(1)) = a(l - e*%(”). (8)
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The system characteristics, kinetic, and stoichiometric
parameter, influent characteristics and SBR initial con-
ditions employed for the process is shown in Tables I
and 2, respectively.

Control variable selection

The biological nitrification, denitrification, and phos-
phorus removal processes are strongly dependent on the
concentration of DO in the aerobic reactor. In particu-
lar, while the nitrification and phosphorus removal
processes are aided by higher concentrations, for the
denitrification process an opposite influence is found. It
is therefore clear that the strategy in the choice of the
DO set point, which considers the actual dynamics of the
above processes, can help in assuring suitable conditions
for their correct development.

It is well known that control of DO within the aerobic
reactor is important not only because it affects the
behavior of organic nutrients such as nitrogen and
phosphorus but also characteristics of flocs and sludge
sedimentation. Ref. [24] observed that DO profiles in
channeled-type aerators could give indications of the
rate of carbonaceous substrate removal, nitrification as
well as sludge sedimentation characteristics. Another
important incentive for controlling the DO concentra-
tion is that if it is possible to control the DO set points
along the channeled-type aerobic reactor, a significant
amount of air and hence energy could be saved, rather
than maintaining a constant airflow rate throughout the
reactor. The airflow rate introduced into the aerobic
reactor can often be independently adjusted by manip-

Table 1 System characteristics,

kinetic, and stoichiometric No Parameter Value Units
parameters used in SBR model
[19, 22, 23] 1 Heterotrophic yield coefficient: Yy 0.67 Dimensionless
2 Heterotrophic growth rate: p g 0.25 h™!
3 Heterotrophic decay rate: by 0.0258 h!
4 Substrate half saturation: Kg 20 mgCOD/1
5 Oxygen half saturation: Koy 0.2 mgO,/1
6 Nitrate half saturation: Kno 0.5 mgN/1
7 Fraction of denitrifiers: #, 0.8 Dimensionless
8 Fraction of hydrolysis: #;, 0.4 Dimensionless
9 Yield coefficient for nitrifiers: Ya 0.24 mgCOD/mgN
10 Growth rate for nitrifiers: p 0.0333 h!
11 Ammonia half saturation: Kny 0.3 mgN/1
12 Oxygen half saturation: Koa 0.4 mgO,/1
13 Decay rate for nitrifiers: b 0.0063 h!
14 Biomass nitrogen factor: i,y 0.086 mgN (mg COD)™
15 Particulate nitrogen factor: iy, 0.060 mgN (mg COD) ™!
16 Saturated oxygen concentration: Sosat 10 mg/l
17 K1 a value at infinite airflow rate: a 166 h™
18 K1 a exponent coefficient: b 16 m®/min
19 Reactor volume: V, 12,400 1
20 Initial volume: ¥V, 2,400 1
21 Fill time: ¢ 0.5 h
22 Aerobic reaction time: ¢, 3 h
23 Volumetric flow rate: F 20,000 1/h
24 Hydrolysis maximum rate: Ky 0.0013 h™!
25 Ammonification rate: k, 0.0033 mg (m > h™")
26 Endogenous biomass fraction: fp 0.080 Dimensionless
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Table 2 Influent characteristics

and initial conditions on No  Parameter Influent  Initial condition  Unit
sequencing batch reactor
[19, 22, 23] 1 Active heterotrophic biomass: Xy 0.001 2240 mgCOD/1
2 Active autotrophic biomass: Xya 0.001 560 mgCOD/1
3 Slowly biodegradable substrate: X 175 20 mgCOD/1
4 Readily biodegradable substrate: S 125 12 mgCOD/1
5 Nitrate and nitrite nitrogen: Sno 1 0.01 mgN/1
6 Ammonium nitrogen: Sny 30 0.6 mgN/1
7 Soluble biodegradable organic nitrogen: Snp 5 0.4 mgN/1
8 Particulate biodegradable organic nitrogen: Xnp =~ 5 3 mgN/1
9 Oxygen uptake rate: OUR 250 mg/l h
10 DO concentration: DO 6.8 0 mg/l
11 Airflow rate : ga 0.65 0 m’/h

ulating the airflow. Nevertheless, this control strategy
alone cannot guarantee good removal of nutrients such
as ammonia due to the highly interacting nature of the
biological nitrogen removal activated sludge process.
One way to circumvent this problem is to design a
“supervisory” controller to adjust the DO set points of
the DO profile controller such that outlet COD, Snp,
and Sno, are controlled.

As mentioned above, since DO concentration is the
main factor affecting the aerobic reactor (react period),
its regulation is important. In this study, we used DO as
a controlled variable by regulating the airflow rate. The
performance of the controller was evaluated by observ-
ing the process responses through set-point tracking for
the nominal value of DO at 0.004, 0.005, and 0.006 mg/1
and disturbance rejection studies. The set point value is
chosen as a compromise among the various values
that would be more suitable in different operational
conditions.

Design of neural networks model

Before the NN-based controllers can be applied, the
procedure for obtaining the NN models, i.e., the for-
ward and inverse models used in these strategies will
have to be performed together with the method of
training the controller. These steps will be discussed in
the next few sections.

Forward modeling

The procedure of training a NN to represent the
dynamics of the system is referred to as forward mod-
eling. Forward modeling in this case refers to training
the NN model to predict the plant output of DO
concentration at the next instant of time(z+1), i.e.,
DO, +1). The architecture of forward NN model can be
seen in Fig. 2.

The input to the network consists of present and one
past value of the X ,Ss, Snoxr_n, NHy —N,Snp,DO
variables. The desired network output is the DO, 1)
value. Those input and output values are fed into the
network in the moving window approach.

From these training exercises, the NN architecture
that has been produced is a 14-node input layer, 28-
node hidden layer, and 1 output layer system. The
activation function applied for the nodes is the sig-
moidal function in both the hidden and output layer.
The NN is trained by switching between the two
training sets, generated by the open loop studies as
mentioned in the previous section. Further, another set
of data is generated to act as the validation data. The
network is considered trained when it satisfies the
performance criteria with an RMSE of less then 0.001
in all the three cases. The forward modeling results in
the first training data and second training data are
shown in Figs. 3 and 4, respectively.

The validation results for the forward model can be
seen in Fig. 5. The results show that the NN model has
been properly trained to predict the forward dynamics
of the system. The final forward model obtained rep-
resents the model to be utilized in the IMC method
later.

The integral absolute error (IAE) for the training and
validation for forward model are listed in Table 3.

Hidden
layer

Output
layer

Xs-1)

Xst

S8 c-1)

Sst

SNO,-N.1)

SNO,-N;

NH-N( 1
'H;-N;

SND(;_])

SNDt

DOy

Fig. 2 The forward model architecture for sequencing batch
reactor
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Inverse modeling

Inverse modeling refers to the training of the NN in pre-
dicting the input to the plant given past data of the inputs
and outputs together with the desired output. The inverse
model is used directly as the controller within the feed-
back loop. Similar to the forward modeling methodology
two training data sets were used, which were switched
from one to the other during training to improve the
identification process. Similar to the forward modeling,
the two layered feed-forward network that has 14 input
nodes, 24 hidden nodes, and 1 output node is used. The
architecture of the inverse model can be seen in Fig. 6.

During training the network is fed with the required
future value,DO, . 1), together with the present and past
input and outputs similar to the forward model inputs to
predict the current input or control action, g4, as seen
in Fig. 6. The network architecture obtained for the
inverse model is a 14 input, 24 hidden, and 1 output
node systems. Figures 7 and 8 show the inverse using
first and second training data.

Figure 9 shows the performance of the inverse model
using the validation data. The results show that the NN
has been adequately trained, with only slight offsets at
certain values in order to predict the inverse dynamics of
the system and hence ready to be used as a controller in
the direct inverse model-based control strategy for the
SBR system. The TAE for the training and validation
studies are listed in Table 4.

Table 3 IAE for the training and validation for forward model

Validation
data

Training record Training

data 1

Training
data 2

1,000
5.8145e-020

1,000 -
2.9886e-022 5.9491e-026

Num of Epochs
TIAE

Hidden
layer

Input
layer

Output
layer

Xsw.n
Xst
Ss(e-1)
Ss;
SN Ox -N, (t-1)
SNO,-N;
NH4-N.1)
NH,-N,
SND(t_ b))
SND,
DO.p

t
D 0(t+l)
qA1)

Fig. 6 The inverse model architecture for sequencing batch reactor

Neural network controller scheme

In this section, the performances of the various NN-
based controllers are discussed. The performances of the
controllers are investigated with studies under nominal
operating condition for multiple set-point tracking un-
der loading disturbance and noise. The disturbances
considered in this study were generated through the
changes in growth rate for nitrifiers (wa), which repre-
sent the internal disturbance. The variation in distur-
bance was generated by changing the growth rate of
nitrifiers (from nominal value of 0.80/day). The varying
values of the set point and disturbances are given in
Table 5. The sampling time interval of 0.01 h is chosen
in all these simulations.

Direct inverse neural network controller

In this strategy the basic direct inverse neural network
(DINN) model is used as the controller for the process
and utilized directly as an element within the feedback
loop.

From Fig. 10, it can be seen that the inverse model
acts as the controller and provides the current control
action with respect to certain current and past values of
the process variables. In this case, the NN model is
trained to predict the required manipulated variable, i.e.,
airflow rate (¢a) and to bring the process to the set
point, i.e., DO.

Figure 11 shows the process and controller response
using this strategy for a multiple set-point tracking study
under nominal operating condition.

It can be seen that aggressive control actions are ob-
served during 1=0.5 h until 7= 3.5 h. The performance of
this controller is generally acceptable because the con-
troller is successful to bring the process to follow the given
set-point changes. But in the period around at =1, 1.5, 2,
2.5, and 3 h, respectively, the controller over acts and
caused the process response to deviate from the set point.

Figure 12 shows the process and controller response
of this NN controller under disturbance and set-point
changes simultaneously. The disturbance considered in
this study was generated by changing the maximum
specific growth rate for autotrophic biomass p o (nom-
inal value of 0.8/day) by decreasing and increasing it by
25% from the nominal value as shown in Table 5.

From Fig. 12, we can see that the controller performs
reasonably when responding to deviation but, it be-
comes sluggish when responding to large deviations in
the process response and the controller does not reject
the disturbance completely as noticed in the range 1=2—
2.05, t=2.5-2.55, and t=3-3.05 h, respectively. Gener-
ally, it can be concluded that the disturbances slightly
affected the system under NN controller strategy with
simultaneously set-point changes.

Figure 13 represents the controller’s performance
subject to the condition in which the measurement of the
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Fig. 7 Inverse modeling of
airflow rate for first training
data

Fig. 8 Inverse modeling of
airflow rate for second training
data

Fig. 9 Inverse model of DO for
validating data
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Table 4 IAE for the training and validation for inverse model

Training record Training Training Validation
data 1 data 2 data

Num of Epochs 1,000 1,000 -

IAE 3.0193e-015 2.5986e-016 4.8335e-016

Table 5 Operating values of process variables, disturbances and
set-point change used in the controller performance in the con-
troller investigation

No Periods (h) Set-point (DO) Disturbances (pp)
1 0.5-1.0h 0.005 1.00
2 1.0-1.5 0.004 0.60
3 1.5-2.0 0.006 1.00
4 2.0-2.5 0.004 0.60
5 2.5-3.0 0.006 1.00
6 3.0-3.5 0.005 0.60

controlled variable is corrupted by 10% noises. From
this figure, it can be seen that, although the changes in
set point can be tracked and the disturbances can be

rejected, the controller action is affected by the noises as
significant fluctuations.

It can be also noticed in the above-mentioned figure,
in spite of disturbance and noisy measurement to the
process, the controller is also capable of following the
time varying characteristic of the process response and
able to track the set-point changes. However, the dis-
advantage exhibited by this controller is that the adap-
tation action works slowly so that the rise time or
settling time of the process response is long and these
capabilities do not cover a wide control range. In view of
the disadvantages observed above, other types of NN
controller, such as the IMC and hybrid neural network
(HNN) will be utilized to improve its performance
especially for handling disturbances, noisy measure-
ment, and delay problems.

Internal model control scheme

In the IMC strategy, both the forward and inverse
models are used directly as elements within the feed-
back loop. The network inverse model is utilized in the
control strategy, acting as the controller, has to learn

Fig. 10 Block diagrams for NN 7"
inverse-based model control Current and past values Le |
strategy Of Controlled variable [
L2 |
DO Manipulated variable
Setpoint > DO
Neural network qA« ©n
> > SBR >
r Inverse model Controlled Variable
Lz |
lle
L= | Current and past values
Of manipulated variable
Fig. 11 Process and controller x 10°
response of basic NN controller 8 T r T T T T
with nominal operating
condition for multiple set-point 6 5 —|1_—
tracking study s T G | i- | !
E 4F R m—— H
Q —— response
>l setpoint -
0 1 L 1 1 L
0 0.5 1 1.5 2 25 3 35
time.h
08 T . - :
. 0B o B
= o 0
[ \
= - | ~— -
% 0.4 : 1|— o __]l o
02} — ir AT
D i i i i i
0 05 1 15 2 25 3 35
time.h
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Fig. 12 Process and controller x 10°
response of basic NN controller 8 T r T .
for multiple set-points tracking
in dealing with disturbance 6 fte— gl "
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£ 4t ——d :
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Fig. 13 Process and controller

response of basic NN controller
for multiple set-points tracking
in dealing with disturbance
rejection study and

DO{mg/)

measurement noise ~response |
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_2 L i i L ' L
1] 0.5 1 1.5 2 25 3 35
time h
08 ! :
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% 0.4 \
s ° e e IR
% 0.2} ——— A
[1]] e -l
_0‘2 1 'l i L ' '}
1] 0s 1 1.5 2 25 3 35
time.h

to supply at its output, the appropriate control
parameter, g4, for the desired targets, DOg,, at its in-
put. The NN forward model is applied in parallel to
compare with the process model and the error between
the plant output and the neural net forward model is
subtracted from the set point before being feedback
into the inverse model. The schematic of the IMC is
illustrated in Fig. 14.

Figure 15 shows the result of the simulation with the
IMC in dealing with the tracking of the set-point
changes under nominal operating condition. It can be
seen that quite sluggish control actions are observed
from r=0.5 h until £=3.5 h. However, the performance
of this controller is generally acceptable because the
controller is able to keep the process at its set point with
only small offsets and oscillations.

Figure 16 shows the process and controller response
in dealing with disturbances. The disturbance considered
in this study was generated by changing the maximum
specific growth rate for autotrophic biomass p, with
nominal value of 0.8 (l/day) by decreasing and
increasing it by 25% from the nominal value.

From the figure, it can be seen that the controller
performs quite reasonably in rejecting the disturbances.
However, sluggish control actions occur to some extent
in range t=2-2.05, t=2.5-2.55, and ¢=3-3.05h,
respectively. Generally, it can be concluded that the
disturbances affected the system under IMC more than
the basic NN inverse model controller.

Figure 17 represents the process and controller per-
formance for multiple set-point tracking study in which
the measurement of the controlled variable is corrupted
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Fig. 14 Block diagrams for

Z-n
IMC system of NN controller Current and past values L= |
Of Controlled variable ,ZTl
Controlled Variable
Setpoint Manipulated variable DO
DO Ly Neural (+1)
l;®err_; Network - qA¢ .
—3|  Inverse Model SBR
A
-1
12 ]
:
Current and past values .
Of manipulated variable . +
‘E_) Network DotV ®
Forward Model F -

DO,

Fig. 15 Process and controller 10-3
response of IMC for nominal 8 X . : : : : .
operating condition
® =]
S 4 I '
£ —— response
Q 2 — setpoint |
0 ]
D 1 1 L 1 L 1
0 05 1 15 2 25 3 35
time,h
DB L] T L T L L]

gA(m3/min)

by 10% noises. From this figure, it can be seen that the
controller can prevent its control action from fluctuation
due to the noises.

Hybrid neural network controller scheme

This study focuses on the development of a hybrid
NN technique ivated sludge process

ol Lal Zyl_i.lbl

15 35

time,h

25

in a SBR. The hybrid scheme consists of a basic NN
controller in parallel with a proportional integral (PI)
controller. The schematic of the hybrid controller is
illustrated in Fig. 18.

The actual control action in this control system is the
combination of the two controllers. Here, the role of the
PI controller is to compensate for the possible sluggish
control action resulting from the basic NN controller.
The control law for the PI controller can be expressed as:
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T —

Fig. 16 Process and controller response of
IMC for multiple set-points tracking with
disturbance rejection study
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Fig. 17 Process and controller response of 10-3
IMC for multiple set-point tracking study 8 % . ; . . . -
with measurement noise
B
S 4r
£ —— response
e 2 — setpoint |7
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&) )
0 05 1 15 2 25 3 3.5

gA(m3/min)

t t
At
ult) = ke (e(t) . / e(t)dt) s (9) Au=k (et 2 e,~> : (10)
1 -

0
where u is the value of the output signal when e(7) =0. where

Uy = u; + Auy, (11)
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Fig. 18 Block diagrams for
hybrid control system of NN \ PI
controller combination with PI Controller
controller
AqA;; Controlled Variable
+ A
DOSP N err AGA; + “ DO (1+1)
-y y| Neural network > — > SBR >
Setpoint Inverse model
Manipulated variable
DOd,ff
e = Ysp — Vis (12) where AqA(,+ 1y is the output of PI controller and

where subscripts ¢ and ¢—1 denote the sampling time; ¢
stands for the current time sampling and 7—1 stands for
the sampling at the previous time.

By considering airflow rate (¢A4) as the control output
and DO as the controlled variable, the control law can
be written as:

At
AqAi11 = ke (et —e—1+ k_let>7 (13)
qAiy1 = qA; + AqA; 1, (14)
€ = (DOsp - DOI)7 (15)

where k. and kg are proportional and integral constants,
respectively. In the implementation, the values of k. and
ki, above were scheduled according to linear segments
based on variable airflow rate.

The control law of this hybrid controller is formu-
lated as follows:

AgAYY ) is the output of the basic NN controller.

Figure 19 shows the result of the controller per-
formed for the hybrid NN controller. The figure shows
the performance of the controller response in dealing
with the tracking of the set-point changes under nominal
operating condition. It can be seen that control actions
smooth are observed during 1=0.5 h until 7/=3.5 h.

Figure 19 shows that the controller performs suc-
cessfully where the controlled variable can be main-
tained at its set-point changes without overshoot and
significant offset. The controller is able to bring the
process to follow the given set-point changes and it is
successful in rejecting the disturbances to the process.
From Fig. 19, it can be concluded that considerable
improvement is achieved by HNN control scheme over
the basic NN scheme.

The study of set-point change-tracking performance
of HNN controller for disturbance rejection is shown in
Fig. 20. The figure shows that the performance of the
controller is excellent and the set-point changes can
be tracked. Although in the HNN controller some

qA(+1) = qA; + AgA[) (+1) T A Al\;fl (16) overshoot occurs it is still lesser than in the basic NN
Fig. 19 Process and controller x 10°
response of set-point tracking 8 T T v
performance for HNN 6l [ N i
controller with nominal P | r PR i
operating condition S 4af -'-.—1[ \L—f Z]
E - response
S 2r —— setpoint 1
1] -
-2 1 1 I L 1 1
0 0.5 1 1.5 2 25 3 35
time h
08 ! T v !
0B} ~—— -
£ e \‘
E
2 04 e f_“‘—- - -
2 02} k——— J —
D i i Il i '}
0 0.5 1 1.5 2 25 3 35
time.h
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Fig. 20 Process and controller x 10°
response of set-point tracking 8 Y v ' v
performance for HNN &l [ {1 . )
controller with disturbance T —‘I‘ lJ d
. . i l- - - LN _ .
rejection study § 4 —— response
o 2k setpoint
o
0 -
7 ] 1 1 L Il Il L
0 0.5 1 1.5 2 25 3 35
time,h
0.8 T T . T
— 06} o il
5 s
@ 04f ‘\% / —a n y
3:cl,z’- 5—-__; N |‘..___1
D i i ' i '}
0 0.5 1 1.5 2 25 3 35
time.h

controller and in the IMC method. The HNN controller
results give relatively fast response so that the rise time
can be attained shortly. It can also be seen that con-
siderable improvement in reducing the offsets is achieved
by this control scheme over the basic NN controller.

The performance of HNN controller in dealing with
the condition as corrupted by 10% noises in the process
can be seen in Fig. 21.

From the above-mentioned figure, it can be seen that
the controller exhibits satisfactory performance. The
controller is not affected by the noises and can ensure
reasonable set-point change-tracking study with quite
smooth control action.

The ability of the HNN controllers in dealing with
the condition where internal disturbance with 10%
measurement noises occurs simultaneously can be seen
in Fig. 22.

The performance of this hybrid controller is again
better than that of the basic NN controller. From all the

results above, it can be concluded that significant
improvement is achieved by utilizing this control
scheme, especially in terms of control precision. The
incorporation of the PI controller in this hybrid control
scheme ensures the suppression of oscillation as it works
around the process set point. As can be seen in Table 6,
the average integral absolute errors resulting from this
controller are smaller compared with basic NN con-
trollers and the IMC.

Conclusion and summary of work

In this work, NN-based controller for DO concentration
in a SBR have been studied. The SBR system is a highly
non-linear system with a need to control the oxygen
intake accurately. The controller performance to control
the DO was evaluated through set point and disturbance
rejection studies. In order to use DO profile as the

Fig. 21 Process and controller x 10°
response of set-point tracking 8 T v v v - :
performance for HNN 6l , T — i
controller with measurement it [ | N
noise § 4k i\ ________J N .
§ 2 —— response | |
(1] S—— —  setpoint E
-2 1 1 I L 1 1
0 0.5 1 1.5 2 25 3 35
time ,h
o8 T T
= 06} M .
€ i
g 0.4 SN P -
T 0ol k'-'--ﬁ-—--" R SE——
D i i i i i
0 05 1 1.5 2 25 3 35
time ,h
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Fig. 22 Process and controller x 10°
response of set-point tracking 8 T r T -
performance for HNN 6 I ..‘....“_.,‘...._.j ; ...,.-_..--[n\‘ -
controller with disturbance _,..._.JI. I Jl e
rejection study and S a4t ; L S L
measurement noise £
S 2F response | 7
o i —— setpoint i
2 Il 1 Il I Il Il
0 0.5 1 1.5 2 25 3 35
time ,h
08 T
—. 06} f v -
(= .
€ \
S o4l e | :
T 02/ k*---w-f 'f S
0 —— i i 'l i 1
0 0.5 1 1.8 2 25 3 35
time.,h
Table 6 The comparison of
IAE for controller response Multiple set-point tracking study TIAE

under BNN, IMC, and HNN
controller for multiple set-point

tracking study

Basic NN controller IMC HNN controller
Nominal condition 1.6813e-007 2.4393e-008 4.0180e-010
Disturbance rejection 2.2802¢-005 1.2074¢-006 2.1030e-007
Noise measurement 1.0633e-006 2.2599¢-007 4.2064¢-008
Disturbance rejection 1.3002e-005 1.0822e-006 1.0868e-007

and noise measurement

control variable, a more complex ASM1 [20] model was
simulated. Simulation with different oxygen profiles
showed that the DO level could be effectively as a con-
trol variable to optimize the processes, i.e., to achieve
the desired COD and nitrogen reduction at the end of
react period.

The controller was evaluated through process and
controller response of the DINN controller, IMC, and
HNN controller for nominal operating condition and
disturbance rejection study. In the evaluation and per-
formance of the DINN controller for constant and
multiple set-point tracking study, it can be concluded
that the controller was fairly acceptable in controlling
the DO concentration but with some offsets persisting.
In the case of disturbance and noisy measurement to the
process, the controller can prevent the process from
fluctuating and in turn, a slightly smoother process can
be achieved. However, the disadvantage exhibited by
this controller is that the adaptation action works slowly
so that the rise time or settling time of the process re-
sponse is long.

The controller performance of IMC for constant and
multiple set-point tracking under disturbances rejection
and process corrupted by noise simultaneously has also
been studied. The process can still be maintained around
its set point and only small oscillations and offset are
observed in the process response. The controller is
capable of following the time-varying characteristic of

the process and seems capable of dealing with the pro-
cess non-linearity as indicated by its ability in linear set-
point study. However, these capabilities do not cover a
wide control range.

In the study of constant and multiple set-point
tracking performance using the HNN controller under
disturbances, it can be concluded that the performance
of the controller is excellent. Although in the HNN
controller some overshoot occurs but however, com-
pared to the DINN and IMC schemes, the performance
of the HNN controller is much better. The HNN con-
troller also results in fast response with rise time and
offsets being minimal in the process response. The per-
formance of HNN controller in dealing with distur-
bances and process corrupted by noise simultaneously
shows very satisfactory performance. The controller is
slightly affected by the noises and can ensure reasonable
set-point change-tracking study with smooth control
action. Based on these results, the HNN controller
scheme is recommended for controlling DO concentra-
tion in SBR.
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